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We present a theoretical analysis of the k-boson nonlinear coherent states of a two-level trapped ion
interacting with two laser fields. Such states are both the zero-energy state of the interaction Hamiltonian
and the eigenstates of a deformed annihilation operator. For the single-boson case, we show that the
structure of the states and their coherence and minimum-uncertainty properties can be compromised
whenever the Lamb–Dicke parameter is one of the roots of certain Laguerre polynomials. We investigate
these problems, which are strictly related to the non-analyticity of the deformation function in the
annihilation operator.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Nonlinear coherent states (NLCS) have become a tool of the ut-
most importance in quantum optics and many efforts have been
devoted to investigating them, also with respect to their prospec-
tive applications in the growing field of quantum technologies (QT)
such as quantum information (coding, transmission and elabora-
tion of information by exploiting properties of quantum states),
quantum computing, quantum imaging and quantum metrology.

Born from the extension of the Glauber states, various forms of
NLCS have been constructed and analyzed from both the theoreti-
cal and the experimental point of view.

In the present Letter the focus is on the k-boson and single-
boson NLCS which can be realized by means of a trapped ion inter-
acting with driving electromagnetic fields as reported in [1,2]. It is
shown that for (and close to) certain values of the Lamb–Dicke pa-
rameter η, the original Vogel NLCS are strongly modified resulting
into new different states, whose experimental realization appears
problematic. The basic quantum properties of these new states,
such as coherence and minimum-uncertainty, exhibit noticeable ir-
regularities. This behavior stems from the non-analyticity of the
characteristic deformation function of the NLCS: indeed, such non-
linear deformation function of the number operator is non-analytic
for the above values of η.

This point, which does not appear to have been tackled sys-
tematically so far, should be kept into account also in view of
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possible experimental realizations. In fact, since the very structure
of the Vogel NLCS and their properties are lost or compromised
near these singular points, the interested experimentalist should
fix the actual value of η far from them. On the other hand, the
theoretical predictions of this Letter could be tested through direct
observation of the deteriorated coherence property of the NLCS in
a range of η which includes one of the critical values.

The Letter is organized as follows: the Hamiltonian of a trapped
ion driven by two lasers is illustrated in Section 2, while in Sec-
tion 3 it is shown how the k-boson NLCS are obtained resorting
to standard tools of quantum optics, i.e., the interaction represen-
tation and the rotating wave approximation (RWA). Section 4 is
devoted to the particular case of the single-boson NLCS, whose
expansion in terms of Fock states is utilized in Section 5 to inves-
tigate the coherence and minimum-uncertainty properties in the
singularity regions of the deformation function.

2. The physical system

The properties of the ion-trap systems and of their Hamiltoni-
ans in various physical regimes have been investigated both the-
oretically [1–13] and experimentally [14–16]. As for the construc-
tion of coherent states for ion-trap systems, it has been proved
that single-boson NLCS can be realized by a two-level ion trapped
in an external harmonic oscillator potential and interacting with
two laser fields [2].

Let H = H0 + H int be the Hamiltonian of the system. The free
Hamiltonian H0 describes the motion of both the internal elec-
tronic and external vibrational degrees of freedom of the ion, while
the interaction Hamiltonian H int corresponds to the interaction of
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the ion with the electromagnetic fields of the driving lasers. The
internal states of the ion are the ground state |g〉 and the ex-
cited state |e〉, whose transition frequency is ω = ωe − ωg . For ν
the frequency of the trap harmonic potential, a the annihilation
operator for the vibrational motion of the trapped ion, n̂ = a†a
and σz = |e〉〈e| − |g〉〈g| the Pauli matrix, which acts as a third
component pseudospin operator, H0 = h̄νn̂ + h̄ωσz/2. Here the
zero-energy level of the ion has been set at halfway between |g〉
and |e〉. The interaction Hamiltonian reads instead

H int = λ
[

E0ei(k0x−ω0t) + E1ei(k1x−ω1t)]S+ + H.c., (1)

where λ is the dipole coupling matrix element, E0, E1, and ω0, ω1
are the amplitudes and the frequencies of the lasers fields, k0, k1
their wavectors. x = η(a† +a)/kL is the position operator of the ion
center of mass, where kL ≈ k0 ≈ k1 is the common value of both
lasers wavevectors, η = kL

√
h̄/(2Mν) is the Lamb–Dicke parameter,

with M the ion mass, and S+ = (σx + iσy)/2 = |e〉〈g|, S− = S†
+ the

two-level ion electronic flip operators. For the lasers tunings one
sets ω0 = ω, which corresponds to the resonant condition of the
first laser, and ω1 = ω − kν , which means that the second laser is
tuned on k-th lower (or red-sideband) vibrational level, with k an
integer � 1. From (1) one then obtains

H int = λe−iωt[E0eiη(a†+a) + eikνt E1eiη(a†+a)
]

S+ + H.c. (2)

3. The k-boson NLCS

The idea underlying the construction of nonlinear bosonic co-
herent states from the interaction Hamiltonian (2) can be summa-
rized as follows:

1. One constructs first the interaction representation of Hamilto-
nian (2), Hint = U †(t)H intU (t) ∝ (Fk S+ + H.c.), where U (t) =
exp(−iH0t/h̄) and Fk is a non-Hermitian operator acting in
the Fock space.

2. Resorting to the RWA Hint is then put in the form H(0)

int ∝
(F (0)

k S+ + H.c.), the operator F (0)

k being the time-independent
component of Fk .

3. The zero-energy state |ξk〉 of H(0)

int , 〈ξk|H(0)

int |ξk〉 = 0, is obtained

from the condition F (0)

k |ξk〉 = 0.
4. The zero-energy state |ξk〉 is recognized to be the eigenstate of

the annihilation operator

Ak = fk(n̂)ak, (3)

with the appropriate expression of the nonlinear function
fk(n̂), i.e., the |ξk〉 are NLCS.

Detailing now the above steps one obtains

Hint = λE1e−η2/2(Fk S+ + H.c.), (4)

with

Fk =
(

E0

E1
+ eiνkt

) ∞∑
�,m=0

(iη)m+�

m!�! eiν(m−�)ta†m
a�. (5)

Operator Fk in (5) can be written in the form

Fk =
(

E0

E1
+ eiνkt

)[ ∞∑
r=1

(iη)r(e−iνrt Zr + H.c.
) + L(0)

n̂

(
η2)], (6)

where Zr = L(r)
n̂

(η2)

(n̂+1)···(n̂+r)
ar and L(m)

n̂
(η2), m integer � 0, is the ‘La-

guerre polynomial operator’. By this one means an appropriate
integral representation,1 whose action in the Fock space results
into the generalized Laguerre polynomial L(m)

n (η2).
Applying the RWA to Hamiltonian (4) implies that all terms os-

cillating with frequency � ν are disregarded in (6) so as to reduce
Fk to F (0)

k = E0
E1

L(0)

n̂
(η2) + iηZk , which leads to the explicit form of

the RWA Hamiltonian

H(0)

int = λE1e−η2/2(F (0)

k S+ + H.c.
)
. (7)

States |ξk〉 are the coherent states defined as the eigenstates of
the operator (3)

Ak|ξk〉 = kξk|ξk〉, (8)

where ξk = −(−i/η)k(E0/E1) is the experimentally controllable
parameter, while the nonlinear operator

fk
(
n̂;η2) =

k∏
j=1

(n̂ + j)−1 L(k)

n̂
(η2)

L(0)

n̂
(η2)

. (9)

Manifestly, the function in (9), that for the sake of simplicity we
shall henceforth denote simply as fk(n̂) as in (3), is non-analytic
over the whole space of the parameter η.

With |ξk〉 = ∑∞
n=0 c(k)

n |n〉, the condition F (0)

k |ξk〉 = 0 leads to

|ξk〉 = ∑k−1
�=0 |ξk〉� , where the states |ξk〉� = ∑∞

n=0 c(k)

nk+�
|nk + �〉 are

fixed by the corresponding sets of coefficients

c(k)

nk+�
=

√
�!ξn

k√
(nk + �)!

n−1∏
m=0

[
fk(� + mk)

]−1
c(k)
� . (10)

The normalization constants c(k)
� chosen to be real in order to re-

trieve the Glauber states when k = 1 and f ≡ 1, are

c(k)
� =

{ ∞∑
n=0

�!|ξk|2n

(nk + �)!
n−1∏
m=0

[
fk(� + mk)

]−2

}− 1
2

. (11)

In (10), (11) the scalar functions fk(� + mk) are obtained from
the action of operator (9) in the Fock space, and the convention∏n−1

m=0
.= 1 for n = 0 is adopted.

It is readily verified that also the states |ξk〉� are eigenstates of
operator Ak defined in (3), Ak|ξk〉� = ξk|ξk〉� , with the k-degenerate
eigenvalue ξk . Since j〈ξk|ξk〉� = δ j� , they form an orthonormal basis
of a k-dimensional Hilbert space.

4. The single-boson NLCS

In the nondegenerate case k = 1 the construction reported in
[2] is restored. The notation adopted so far can be simplified by
dropping the index k throughout.

4.1. The states |ξ〉 as eigenstates of A = f (n̂)a

In view of (8) |ξ〉 is by construction the eigenstate of the oper-
ator A = f (n̂)a, the eigenvalue being ξ = iE0/(ηE1). The relevant
commutation relations are [n̂, A] = −A, [n̂, A†] = A† and[

A, A†] = (n̂ + 1) f 2(n̂) − n̂ f 2(n̂ − 1)
.= C(n̂). (12)

In terms of Fock states

|ξ〉 = N
∞∑

n=0

cn|n〉, N =
[ ∞∑

n=0

|cn|2
]− 1

2

, (13)

1 For example L(m)

n̂
(x) = 1

2π i

∮
C

e−xz/(1−z)z−n̂

(1−z)m+1
dz
z , where C is a closed contour cen-

tered at the origin of the complex plane, whose radius |z| is < 1.
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where the normalization constant N is but c(1)
0 in Eq. (11) and

(cf. (10))

cn = ξn

√
n!

n−1∏
j=0

[
f ( j)

]−1 = ξn
√

n!
n−1∏
j=0

L(0)
j (η2)

L(1)
j (η2)

, (14)

with f ( j) = L(1)
j (η2)/[( j + 1)L(0)

j (η2)] and c0
.= 1. For m � 1, the

following recurrence formula holds for the coefficients (14)

cn+m = ξm

√
n!

(n + m)!
m−1∏
�=0

[
f (n + �)

]−1
cn. (15)

Notice that for η2 = 0, |ξ〉 reduce to the Glauber states as in
this case f ( j) = 1 ∀ j.

4.2. The states |ξ〉 as minimum-uncertainty states

For dimensionless Hermitian operators Q = (A† + A)/
√

2, P =
i(A† − A)/

√
2, in view of (12), one has [Q , P ] = iC(n̂). Of course

Q and P are not the usual phase space operators, i.e., they are not
the center of mass position and momentum of the ion, but they
are introduced here as a convenient device to test the minimum-
uncertainty property of states |ξ〉. Indeed, calculating the variances
(�Q )2

ξ , (�P )2
ξ in states |ξ〉, one finds the Heisenberg uncertainty

relation (�Q )2(�P )2 � |〈[Q , P ]〉|2/4 with an equal sign, as

(�Q )2
ξ = (�P )2

ξ = 1

2

∣∣〈ξ |C(n̂)|ξ〉∣∣. (16)

Here 〈ξ |C(n̂)|ξ〉 = N 2 ∑∞
n=0 |cn|2C(n) = ∑∞

n=0 pnC(n), where pn =
|cn|2 N 2, 0 � pn � 1 ∀n, and C(n) = (n + 1) f 2(n) − nf 2(n − 1).
Eq. (16) confirms that states (13) are intelligent states. On the
other hand, they are not generalized coherent states since, in view
of (12), A and A† do not generate a finite-dimensional algebra.

5. The singularities

Eq. (14) shows that, due to the presence of non-analytic func-
tions f ( j), the coefficients cn possess n(n−1)/2 zeros and as many
poles corresponding to the roots of the n Laguerre polynomials
L(0)

j (η2) and L(1)
j (η2), respectively. One expects that the structure

of states (13) is strongly modified if the values of η2 result into a
vanishing or singular cn .

The problem, referred to briefly in [8], is addressed in [9] in
relation to the representation of the Fock states in terms of single-
boson NLCS.

5.1. Effect of a single zero of cn

By ‘single zero’ of a given cn , say cν , one means that η2 is
such that L(0)

ν−1(η
2) = 0 and, equivalently, f (ν − 1) → ∞. Since,

from (15), cν+m = 0 ∀m � 1, the sums in |ξ〉 and N can be trun-
cated so that the states read

|ξ〉ν = Nν

ν−1∑
n=0

cn|n〉, Nν =
[

ν−1∑
n=0

|cn|2
]− 1

2

. (17)

The vanishing of coefficient cν breaks the coherence of the
NLCS |ξ〉 as the states (17) do not satisfy any longer the eigenvalue
equation of the annihilation operator. Indeed, A|ξ〉ν = ξ(|ξ〉ν −
Nνcν−1|ν − 1〉), where the rhs is different from ξ |ξ〉ν .

As for the minimum-uncertainty property, the variances of op-
erators Q and P in states (17), (�Q )2

ν and (�P )2
ν , differ markedly

from expression (16). In fact, one has (�Q )2
ν = Ξ + Λ, (�P )2

ν =
Ξ − Λ, where
Fig. 1. (�Q )2
ν (�R)2

ν vs. η2 for ν = 4, |ξ | = 0.05.

Fig. 2. (�Q )2
ν (�R)2

ν vs. η2 for ν = 4, |ξ | = 0.1.

Ξ = |ξ |2 pν−1(ν)
[
1 − pν−1(ν)

] + 1

2

ν−1∑
n=0

pn(ν)C(n),

Λ = 1

2

(
ξ2 + ξ̄2)[pν−1(ν) − p2

ν−1(ν) − pν−2(ν)
]
,

with pn(ν) = |cn|2 N 2
ν , 0 � pn(ν) � 1 ∀n, ν . The bar denotes com-

plex conjugation. The product (�Q )2
ν(�P )2

ν = Ξ2 − Λ2 has to be
evaluated numerically. In Figs. 1 and 2 it is exemplified, in the
range 0 < η2 � 2, the case c4 = 0, i.e., η2 one of the roots of
L(0)

3 (η2), considering |ξ | = 0.05 and |ξ | = 0.1, respectively. In fact,
due to the product form of cn in (14), the product of the variances
diverges when η2 is one of the roots of the Laguerre polynomials
L(0)

j (η2), j = 1,2,3, which lie in the considered range.
The results are significantly influenced by the parameter ξ . In-

deed, Fig. 1 shows that, for a relatively small value of ξ , the regions
where the product of the variances (�Q )2

4(�P )2
4 diverges are very

localized. Furthermore, the ‘classical’ minimum-uncertainty value
1/4 is maintained over a wide range of values of η2: specifically,
in these regions the numerical calculations give (�Q )2

ν = (�P )2
ν ≈

1/2 and C(n̂) ≈ I. Therefore, the corresponding states (17) are
minimum-uncertainty states and can be conveniently utilized for
QT purposes, while Q and P can be considered, approximately,
canonically conjugate operators. On the other side, Fig. 2 and fur-
ther numerical calculations prove that the minimum-uncertainty
property is verified to a lesser degree for larger values of ξ . Numer-
ical investigation shows as well that, as expected, the minimum-
uncertainty feature depends also on the parameter ν , in the
sense that the lower the value of ν , the wider the ranges where
the minimum-uncertainty property is verified by the truncated
states (17).
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When η2 is one of the roots of the polynomials L(1)
j (η2), j =

1,2,3, a different effect is registered. Figs. 1 and 2 show that the
variance product does not diverge and never reaches zero.

5.2. Effect of a single pole of cn

By ‘single pole’ of a given cn , say cμ , one means that η2 is such

that L(1)
μ−1(η

2) = 0 and, equivalently, f (μ − 1) = 0. From the re-
currence relation (15) it follows that the coefficients cμ+m → ∞
as rapidly as cμ , ∀m � 1. The above conditions imply that one can
disregard the first μ terms of the sums in |ξ〉 and N obtaining the
following expressions of the states and their normalization con-
stant

|ξ〉μ = Nμ

∞∑
j=0

cμ+ j|μ + j〉, Nμ =
[ ∞∑

j=0

|cμ+ j|2
]− 1

2

. (18)

Factorizing the singular terms cμ and |cμ| in (18) and resorting
to (15) one finds

|ξ〉μ = iμS
− 1

2
μ

∞∑
j=0

ξ j

√
μ!

(μ + j)!
j−1∏
�=0

[
f (μ + �)

]−1|μ + j〉,

where iμ = cμ/|cμ| is a global phase factor and

Sμ = (|cμ|2 N 2
μ

)−1 =
∞∑
j=0

|ξ |2 j μ!
(μ + j)!

j−1∏
�=0

[
f (μ + �)

]−2
. (19)

The question whether or not Sμ converges, and hence the states
(18) exist (in the sense that they are normalizable), can be tackled,
for example, through the ratio test. According to this criterion the
convergence of the series (19), written as Sμ = ∑∞

j=0 s(μ)

j , implies
the evaluation of the ratio

s(μ)

j+1

s(μ)

j

= |ξ |2
(μ + j + 1) f 2(μ + j)

= |ξ |2(μ + j + 1)

[ L(0)
μ+ j(η

2)

L(1)
μ+ j(η

2)

]2

,

when j → ∞. Resorting to the asymptotic form for large degree
Laguerre polynomials [17]

L(m)
n

(
η2) ≈ eη2/2

√
π

n(m−1/2)/2

η(m+1/2)
cos

(
2η

√
n − m

π

2
− π

4

)
, n � 1,

one can check that, upon setting α = ( π
8η )2,

(i) Sμ diverges if α ∈ Q;
(ii) if α is sufficiently irrational, i.e., |α − p

q | >
γ
qβ , for p, q arbi-

trarily large integers, whose ratio best approximates α, γ ∈ R

and β � 1, then Sμ converges. For example, for β = 1, this
happens provided |ξ |2 < 1, i.e., η > E0/E1.

Since η is a physical parameter of the system, whose square is here
assumed to be a root of L(1)

μ−1(x), it is unlikely that α is rational,
therefore case (ii) is what one should expect.

Writing the action of A on the states (18) one has, in the single
pole case,

A|ξ〉μ = ξ
(|ξ〉μ + Nμcμ−1|μ − 1〉), (20)

while the minimum-uncertainty property in states (18) reads

(�Q )2
μ = (�P )2

μ = |ξ |2|cμ−1|2 N 2
μ + 1

2

∞∑
pn(μ)C(n), (21)
n=μ
where pn(μ) = |cn|2 N 2
μ , 0 � pn(μ) � 1, ∀n,μ. Notice that, since

Nμ is vanishingly small, from (20) and (21) it follows that the
coherence and the minimum-uncertainty properties are not fully
compromised when a single pole is encountered. This result is
physically plausible as states (18) are still an infinite superposition
of Fock states and one retrieves, in the context of the NLCS, the
property of the Glauber states of being eigenstates of any power of
the annihilation operator a.

6. Concluding remarks

In this work the properties of the NLCS constructed for a two-
level laser-driven trapped ion have been investigated in the frame-
work of the usual quantum optics approach based on both the in-
teraction picture and the RWA. Due to the manifest non-analyticity
of the function in the deformed annihilation operator, one expects
that the fundamental quantum features of these states can ex-
hibit significant differences with respect to the customary coherent
states. The single-boson case has been analyzed since the k-boson
NLCS are expected (see Eqs. (9)–(11)) to exhibit exactly the same
problems. Specifically:

• If the squared Lamb–Dicke parameter happens to be a root of
a given Laguerre polynomial L(0)

ν−1(η
2), then states (13) reduce

to the finite sum of Fock states (17) and the coherence and the
minimum-uncertainty properties are compromised. However,
the latter feature still holds over a wide range of typical values
of η for relatively small values of ξ and if ν is not exceedingly
high (i.e., one does not consider highly excited vibrational lev-
els).

• If the squared Lamb–Dicke parameter happens to be a root of
a given Laguerre polynomial L(1)

μ−1(η
2), then states (13) trans-

form into the infinite sum of Fock states (18). The coherence
and minimum-uncertainty properties are retained when the
series (19) converges, which was shown to be the case one
should expect.

To summarize, the conclusions of the present analysis should
be kept into consideration when implementing the ion trap NLCS.
Indeed, such states have already been realized experimentally [14]
and can find prospective applications ranging from quantum infor-
mation to basic science. It is therefore important to bear in mind
that their very structure and their specific properties can be lost or
compromised if the physical system is too close to critical values
of the Lamb–Dicke parameter induced by the zeros of the rele-
vant Laguerre polynomials. This can happen also on account of the
finite accuracy in fixing the control parameter η when preparing
single and k-boson NLCS for actual experiments.
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